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Abstract—Pulmonary auscultation analysis is a crucial part
of the diagnosis of respiratory illnesses, yet it remains largely
a manual task dependent on the skills of individual physicians.
Efforts have been made to use machine learning to automate
detection of abnormal lung sounds in auscultation analysis,
but typical labeled datasets require experts to engage in time-
consuming annotation. In contrast, unlabeled data is relatively
easy to obtain. In this paper, we use cross pseudo supervision
to leverage a small amount of labeled audio data and a larger
amount of unlabeled data to perform automated auscultation
analysis. We show that this method significantly outperforms
fully supervised models trained only on the labeled data.

Keywords—semi-supervised learning, auscultation analysis,
pretraining, cross pseudo supervision

I. INTRODUCTION AND PROBLEM DEFINITION

Pulmonary auscultation, or the act of listening to lung
sounds with a stethoscope, provides vital information to aid
in the diagnosis of respiratory diseases by detecting the
inhalation-exhalation cycle as well as abnormalities such as
crackles, rhonchi, stridor, or wheezes [1]. Despite being non-
invasive, it is effective: a review of 28 studies involving a
total of 2,032 patients showed that these respiratory sounds are
useful indicators of respiratory illnesses such as asthma, cystic
fibrosis, and bronchiolitis [2]. Although there have been great
advances in healthcare throughout the last century, pulmonary
auscultation largely still requires the expertise of medical
professionals, due to the high degree of variability present
in lung recordings and the difficulty in distinguishing normal
from abnormal sounds.

In recent decades, electronic stethoscopes such as the
Littmann 3200 have been developed for long-duration auscul-
tation to aid in patient monitoring, but they still require human
expertise for analysis; additionally, as physicians may not have
the time or auditory acuity to properly analyze the recordings
produced, manual analysis can lead to incorrect diagnoses of
respiratory diseases and significantly impact patient outcomes
[3]. This motivates us to build machine learning models that
can automate the process of detecting adventitious sounds in
electronic stethoscope recordings as shown in Fig. 1. Note that
lung sound labels can overlap, turning this into a multi-label
classification problem, which is more difficult than traditional
single-label classification tasks.

In addition, traditional machine learning models require
large datasets of labeled data. While lung sound recordings

Fig. 1. Illustration of lung sound recording and associated labels. From top to
bottom: audio waveform, spectrogram, and annotated labels (CAS: continuous
adventitious sound, DAS: discontinuous adventitious sound).

are relatively easy to obtain in a hospital setting, labeling
the recordings requires the expertise of medical experts and
large amounts of annotation time. Therefore, we apply semi-
supervised techniques to this problem by training models on
a small set of labeled auscultation data and a larger set of
unlabeled data, to show the viability of such an approach in
lung auscultation analysis.

Specifically, we propose a semi-supervised pulmonary aus-
cultation analysis method based on cross pseudo supervision,
using two differently initialized networks that supervise each
other on unlabeled data. Furthermore, since a model that is
trained from scratch will first have to learn to understand
audio data before it can learn to predict respiratory sounds,
we leverage model backbones pretrained with existing large-
scale audio datasets.

Therefore, our contributions are as follows:

• We apply semi-supervised learning techniques using two
networks to the task of pulmonary auscultation analysis.
To the best of our knowledge this is the first time such
techniques have been used for this problem. Particularly,
we show that semi-supervised learning with cross pseudo
supervision outperforms purely supervised baselines.

• We show that pretraining models on large-scale audio
datasets can further improve performance in pulmonary
auscultation analysis.



II. RELATED WORK

A. Semi-Supervised Learning

Semi-supervised techniques allow models to leverage a large
unlabeled dataset along with a smaller number of labeled
examples, which is useful in scenarios such as our problem set-
ting, where obtaining labeled data is expensive but unlabeled
data is relatively abundant. One such technique is self-training,
where a model predicts pseudo labels for unlabeled data,
which is then used to retrain the model. Another technique is
label propagation, a graph-based method that assigns labels to
unlabeled data on the assumption that similar data has similar
labels.

In the last few years, deep learning based approaches have
emerged that utilize two networks. Mean Teacher [4] is an
approach involving a student network and a teacher network,
where the teacher network is the exponential moving average
of past student networks. During training, the student network
first undergoes supervised training with labeled data, and then
is trained with unlabeled data by using pseudo labels generated
by the teacher network. Guided Collaborative Training (GCT)
[5] is a complex approach that essentially uses two differently-
initialized networks and enforces a consistency loss between
their predictions, encouraging them to produce similar outputs.

More recently, Cross Pseudo Supervision (CPS) [6] also
uses two differently-initialized networks, but instead of di-
rectly using network predictions to calculate the consistency
loss, it generates pseudo labels from those predictions and
calculates consistency loss between each network’s prediction
and the other network’s pseudo labels. Despite its simplicity,
the CPS approach has been shown to outperform other semi-
supervised methods, including both Mean Teacher and GCT,
in semantic segmentation tasks.

B. Automatic Pulmonary Auscultation Analysis and Sound
Event Detection

Many machine learning methods have been applied to
the task of pulmonary auscultation analysis. Early machine-
learning based methods used multilayer perceptrons [7]
and convolutional neural networks [8]. Fernando et al. [9]
used temporal convolutional networks (TCNs), creating a
lightweight yet performant classifier. Hsu et al. [10] used
CNNs coupled with LSTMs and GRUs due to the nature of
the audio domain, since recurrent networks are effective on
sequential data where there are strong relationships between
previous and future events.

There exists prior work that uses a similar problem setting to
this paper. Chamberlain et al. [11] used a two-stage approach
to use labeled data in conjunction with unlabeled data, by
building a feature extractor trained on unlabeled data that
generates embeddings for a classifier trained on labeled data.
Lang et al. [12] use a graph-based method similar to label
propagation to leverage unlabeled data. Our approach, using
two networks that supervise each other with unlabeled data,
enables semi-supervised learning while using labeled and un-
labeled data in tandem, rather than in two distinct components.

The Detection and Classification of Audio Scenes and
Events (DCASE) Challenge [13] includes a similar task, semi-
supervised sound event detection. This is a similar problem,
which involves determining the sounds present in a recording
and their respective start and end times. One approach uses
sound separation techniques that aim to separate individual
sound sources from an audio mixture; by isolating specific
sound events from the mixture, it becomes easier to detect
and classify them [14]. Additionally, some researchers have
modified and applied the Detection Transformer (DETR) ap-
proach to audio event detection [15]. These are interesting
approaches that are outside the scope of this paper, but may
be relevant in future research. However, our problem is more
difficult because all sounds recorded are human-produced, so
the class separation is smaller (i.e., there is a larger disparity
between human speech and the hum of a vacuum cleaner than
between the sounds of inhalation and exhalation). Therefore,
distinguishing respiratory sounds requires a model capable of
detecting much more nuanced differences in audio data.

C. Network Pretraining

In recent years, pretraining has proven to be a powerful
technique for enhancing the performance of deep neural net-
works in various domains. The theory is that a network can
be first trained on a larger dataset to learn to create useful
representations from data, before being fine-tuned for specific
tasks. Notably, pretraining on large-scale image datasets such
as ImageNet [16] has shown success in improving the perfor-
mance of image-based machine learning models, as well as
accelerating model convergence during training. Models such
as ResNet50 [17] pretrained on ImageNet are commonly used
as backbones in computer vision models.

Similarly, AudioSet [18] is a large-scale dataset for audio-
based applications, enabling the creation of pretrained audio
neural networks (PANNs) [19] as feature extractors for the
audio domain.

III. APPROACH

Our model uses a twin network architecture, with each
network consisting of a feature extractor generating embed-
dings from audio spectrogram data, and a multi-label classifier
that detects respiratory sound events using those embeddings.
The two networks supervise each other on both labeled and
unlabeled data; the proposed overall network structure is
shown in Fig. 2.

A. Cross Pseudo Supervision

Cross Pseudo Supervision [6] enables semi-supervised
learning using two networks that are structurally identical but
differently initialized. It enforces consistency regularization
by having the networks each generate pseudo labels from
unlabeled data, which are then used to supervise the other
network. Whereas [6] uses one-hot pseudo labels for semantic
segmentation, this is infeasible in our problem setting because
multiple classes of sounds may be present at the same time.



Fig. 2. Overall Model Architecture.

Instead, we generate pseudo labels via thresholding. The CPS
loss is then calculated as follows:

Lcps =
1

N

N∑
n=1

ℓbce(f(xn, w1), Tτ (f(xn, w2)))

+ℓbce(f(xn, w2), Tτ (f(xn, w1))), (1)

where f(xn, wk) is the output of a network initialized with
weights wk and given input xn, N is the number of samples
(both labeled and unlabeled), Tτ (θ) is a thresholding function
that returns 1 for θ > τ and 0 otherwise, and ℓbce is the
weighted binary cross-entropy loss function, defined as

ℓbce(p,q) = − 1

CD

C∑
c=1

Wc

D∑
d=1

qc,d · log(pc,d)

+(1− qc,d) · log (1− pc,d), (2)

where C is the number of output classes, D is the time
dimension, Wc is the weight of class c in the loss calculation,
p is the output probabilities, and q is the labels (which are
pseudo labels in the case of CPS loss). We use binary cross-
entropy instead of the cross-entropy loss used in [6] due
to the multi-label problem setting. To deal with large class
imbalances, we weight the binary cross entropy losses for each
class using Wc = Fmax/Fc, where Fmax is the number of time
frames in the labeled dataset containing the most common
class and Fc is the number of time frames containing class c.

The supervised loss is defined as

Lsup =
1

Nlab

Nlab∑
n=1

[ℓbce(f(xn, w1),yn)

+ℓbce(f(xn, w2),yn)], (3)

where Nlab is the number of labeled samples in the dataset
and y is the ground truth labels. The final loss is the weighted
sum of supervised loss and CPS loss:

L = Lsup + λLcps, (4)

where λ is a weighting parameter to balance these two losses.
The cross supervision using pseudo labels drives the networks
towards the same extreme when their outputs are similar,
improving the clarity of the decision boundary. If the network
outputs are dissimilar, this effect is negated, so unlabeled
samples with inconsistent pseudo labels are de-emphasized. As
the training process continues and the pseudo labels improve,
the unlabeled data effectively helps to expand the training
dataset.

B. Feature Extractor and multi-label Classifier

Log-mel spectrograms generated from audio data are fed
into a feature extractor module, which produces an interme-
diate representation that is passed to a multi-label classifier
module as shown in Fig. 3. We use the CNN architecture from
PANN [19] with or without AudioSet pretraining as our feature
extractor. Since PANN is designed primarily for clip-level
audio source classification and not framewise sound event de-
tection, we modify the pretrained model with deconvolutional
layers to increase the model’s time resolution. The multi-label
classifier module consists of two bidirectional gated recurrent
unit (BiGRU) layers coupled to a linear output layer, followed
by an interpolator to match the dimensions of the outputs
and labels. GRUs are well-suited for time-domain tasks due
to their ability to capture long-range temporal dependencies
and patterns in sequential data. The bidirectional aspect of
a BiGRU allows it to consider past and future information
simultaneously, which further improves its ability to find
relationships between frames in the time domain.

Fig. 3. Single Network Architecture.

IV. EXPERIMENTAL RESULTS

A. Setup

Datasets: We train and evaluate our models on
HF Lung V1 [10], the largest publicly available dataset of
lung sound recordings, as opposed to smaller datasets such
as ICBHI [20]. It comprises 9,765 strongly labeled 15-second
sound recordings from 279 patients. The annotations contain
34,095 inhalation labels, 18,349 exhalation labels, 13,883 con-
tinuous adventitious sound labels (comprising 4,740 rhonchi
labels, 8,457 wheeze labels, and 686 stridor labels), and
15,606 discontinuous adventitious (crackling) sound labels.
The dataset contains recordings from two different machines:
a Littmann 3200 electronic stethoscope and an HF-Type-1,



TABLE I
ABLATION STUDY (MODELS TRAINED ON 1/8 OF LABELED DATA; HIGHER NUMBERS ARE BETTER)

Component AUC F1
CNN BiGRU Pretrain CPS Inhalation Exhalation DAS CAS Inhalation Exhalation DAS CAS
✓ 89.48% 74.22% 79.30% 84.36% 70.23% 32.61% 35.30% 32.17%
✓ ✓ 92.64% 79.10% 78.37% 86.49% 73.62% 38.57% 34.98% 34.08%
✓ ✓ ✓ 92.44% 80.77% 83.79% 92.65% 73.43% 40.52% 44.19% 49.69%
✓ ✓ ✓ ✓ 93.59% 83.99% 87.64% 93.88% 75.80% 45.76% 49.16% 53.57%

a recording device custom-built by the dataset authors. We
only use recordings from the Littmann as only 18 out of 279
patients were recorded using the HF-Type-1 device.

Evaluation: We evaluate performance using the area under
the receiver operating characteristic curve (AUC) and the
F1-score. For each model, we calculate AUC and F1 for
each of the four classes: inhalation, exhalation, continuous
adventitious sound (CAS), and discontinuous adventitious
sound (DAS). Following the dataset evaluation setup [10],
we group rhonchi, wheeze, and stridor into a single class.
We use the train/test split provided by the dataset authors, so
there is no cross-contamination between training and testing
data (i.e., each patient’s data is present only in the training
or in the testing set). We use a validation split comprising
10% of the total training data, also taking care to avoid
cross-contamination. In total, 2,929 recordings (labeled and
unlabeled) are used for training, 325 recordings are used for
validation, and 1,250 recordings are used for evaluation.

Data Preprocessing: To reduce noise in the audio data, we
first run raw audio waveforms through a tenth-order Butter-
worth high pass filter to remove frequency data below 100Hz,
as that is the lower frequency bound of lung sounds. We then
generate log-mel spectrograms from these audio waveforms
using 64 Mel bins, a short-time Fourier transform (STFT)
window of 256 samples and a hop size of 80 samples. Finally,
we conduct min-max normalization on the spectrograms.

Implementation: We implement our models using the
PyTorch framework. We initialize the weights of convolutional
and linear layers with Kaiming initialization and initialize
BiGRUs with orthogonal initialization. For pretrained models,
the feature extractor is initialized with the weights of a PANN
trained on 8kHz data from AudioSet. We train using the
AdamW optimizer with a weight decay of 0.001, a polynomial
learning rate (initialized at 0.0001) with power 0.9, and a batch
size of 16. We set λ to 1.0 in all experiments. Because Cross
Pseudo Supervision generally makes the model training less
stable, for CPS models we first start with 50 epochs of non-
CPS training, then take the model with the best sum of F1
scores on the validation set to continue with 50 epochs of
CPS training using both labeled and unlabeled training data.

B. Results

Ablation Study: We show the results of adding each
individual component of our auscultation analysis model in
Table I; overall, they each generally improve the model per-
formance. The addition of BiGRU layers produces significant

TABLE II
COMPARISON OF F1 SCORES ACROSS VARIOUS PARTITIONS OF LABELED

DATA FOR BASELINE AND PROPOSED MODELS

Partition Model Inhalation Exhalation DAS CAS

1/2
Baseline 75.87% 46.59% 46.24% 42.06%
Proposed 76.65% 49.90% 50.46% 55.63%

1/4
Baseline 74.52% 44.19% 41.13% 40.80%
Proposed 75.50% 47.09% 50.55% 53.95%

1/8
Baseline 73.62% 38.57% 34.98% 34.08%
Proposed 75.80% 45.76% 49.16% 53.57%

1/16
Baseline 71.62% 37.80% 30.24% 25.69%
Proposed 74.31% 43.19% 44.67% 53.10%

improvement on inhalation and exhalation, demonstrating the
BiGRU model’s ability to exploit time-wise relationships due
to the strong causal correlation between these two classes.
Pretraining on AudioSet results in a large improvement in
both AUC and F1 on the DAS and CAS classes, showing that
this pretraining improves the model generalizability in low-
data situations, as these are the two classes with the fewest
number of training examples. Cross Pseudo Supervision leads
to substantial increases across all classes, showing its ability
to leverage the unlabeled data to expand the training dataset
via pseudo-labeling.

Comparison with Baselines: We compare our semi-
supervised proposed model to the supervised baseline model
(which is similar to CNN+BiGRU, the best model evaluated
in [10]) on 1/2, 1/4, 1/8, and 1/16 labeled data partitions
using the AUC in Fig. 4 and using the F1-score in Table II.
The proposed model outperforms the baseline in all partitions.
We observe that the supervised baseline performance drops
significantly as the amount of labeled data decreases, while
the performance of the proposed model does not degrade as
dramatically. On a few occasions, a proposed model trained on
lesser amounts of labeled data slightly outperforms a proposed
model trained on more labeled data; we hypothesize that this is
because the size of the total training dataset (both labeled and
unlabeled) is the same when using semi-supervised learning.

Qualitative Analysis: We provide some sample model
outputs in Fig. 5 to qualitatively verify the results. We see
that the semi-supervised model provides results much closer
to the ground truth labels compared to the baseline, especially
in classes with fewer examples (namely, DAS and CAS).



Fig. 4. AUC performance of supervised baselines (blue circles) and the
proposed method (pink squares) for all four classes: (a) Inhalation, (b)
Exhalation, (c) DAS, (d) CAS.

Fig. 5. Qualitative results for baseline and proposed methods trained on (a)
1/2 of labeled data and (b) 1/8 of labeled data.

V. CONCLUSION

In this work, we have shown that Cross Pseudo Supervision,
coupled with network pretraining and BiGRUs to understand
temporal relationships, outperforms purely supervised base-
lines in semi-supervised pulmonary auscultation analysis. The
improvements brought on by the usage of semi-supervised
techniques show that they hold significant promise in lung
auscultation analysis. The dataset used in this study was
necessarily fully labeled, in order to test different partitions
of labeled and unlabeled data; however, by demonstrating that
unlabeled data can be effectively utilized, this study allows
for the generation of much larger unlabeled datasets to further
enhance the performance of pulmonary auscultation analysis
systems. There are avenues for future work; while CPS gen-
erally leads to better performance on the evaluation metrics,
its addition makes training more unstable since generated
pseudo labels may be incorrect, sometimes leading to rapid
deterioration of model performance after a period of train-
ing. Reweighting approaches such as those proposed in [21]
could enable the model to better detect and either disregard
or de-emphasize poor pseudo labels. We are confident that
continuing research into semi-supervised auscultation analysis
will lead to more robust and effective diagnostic tools for
respiratory conditions, benefiting both patients and healthcare
providers.
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